
te

CAL
RAS

Motivation
● Pure pursuit drives much more consistently than manual control
● Useful for gathering training data

ROS - Robot Operating System
● Project runs code in ROS nodes, which communicate using topics

Modularity
● Nodes can be interchanged while others are kept the same
● Main can be replaced by the Simulator node, for parallel

development without hardware
● Specifics for Arduino hardware can be found in the 2022 “Mini

Smart Car Hardware Design” poster

WINLAB

Autonomous Self Driving Vehicular Project 2023
Adarsh Narayanan (UG), Joshua Menezes (UG), Christopher Sawicki (UG), Tommy Chu (UG), Brandon Cheng (UG),

Ruben Alias (UG), Aleicia Zhu (HS), Ranvith Adulla (HS), Arya Chhabra (HS), Suhani Sengupta (HS)

RASCAL Overview

Physical Design

Software Architecture

Pure Pursuit & Odometry

Imitation Learning Model

Conclusion & Future Work

In our project, we hope to provide greater simulation accuracy with our
design for a ~1/14 scale platform for miniature smart cars for
repeatable tests in the smart city environment. Our design includes
mechanisms such as Ackerman steering and differential gearing
system to emulate the behavior of real cars, as well as sensors to
calculate feedback. Using this car, we trained an imitation learning
model to drive using camera input.

Goal
Create a self-driving car that emulates the mechanics of a real car,
controlled autonomously by an imitation learning algorithm

Methodology
● Prototype 3D printed car
● Control hardware components
● Record training data
● Train machine learning model to associate control to image

RASCAL: Robotic Autonomous Scale Car for Adaptive Learning

Goal
Train a PyTorch machine learning model to drive using video input

Data Collection
● Drive with pure pursuit algorithm
● Collect training data using the camera and control input
● Synchronize data to associate image frames with control input
● Clean the data and split it into training and test sets

Training the Model
● Train model to learn speed and curve associated with an image
● Output speed and curve when given a new image
● Compare with expected value (output from pure pursuit)

Running the Model
● Give the model live image feed and receive signals to control car

Conclusion
Our hardware and software redesigns resulted in vastly improved
performance in operation. Using pure pursuit, we were able to
accurately follow a defined path with manageable drift, and gather
data to train our imitation model to drive in a loop in the smart city.

Ackerman Steering
● Inside wheel travels in an arc with a

smaller radius during turns
● Allows car to turn front wheels at correct

angles
● Eliminates skidding during turns

Differential Gear System
● Back wheels are powered by stepper motor
● Allows left and right wheels to turn at

different speeds, to accommodate different
turn radii

Adafruit BNO005 Absolute
Orientation Sensor
● Orientation data
● Used for odometry

3D Model of RASCAL 2.0

Anker 737 Power Bank
● Improved battery for

addition of camera

Intel RealSense D435
● RGB and depth camera

SLAM

Smart City Model

Pure Pursuit
● Finds a lookahead point on a path

given the path and current position
● Internal calculations drive the car in

arcs to the lookahead point

Odometry
● Uses car angle (from IMU) and distance

traveled (from encoder) to calculate the
car’s position with arcs

● Use this feedback to constantly adjust back
on to the path

Additional components added since
2022 Smart Car Hardware Design project:

Future Work
● Improve design for easier assembly and

mass production
● Incorporate an additional input of

desired action, such as left or right at an
intersection

● Process data with time or previous
state, like stopping at stop signs or
waiting for traffic lights

● Train to output a desired point instead
of direct controls and use pure pursuit

● Implement SLAM (Simultaneous
localization and mapping) to improve
accuracy of odometry using depth
camera

Driving in the Smart City

Pure Pursuit
Feedback Loop

ML Model
Inference Path

Software Architecture Diagram

This work was supported in part by the NSF REU
program and the donation from nVERSES CAPITAL

🤖

Handling Motor Speed
Motor speed is calculated by finding the time t it took for the wheel to
rotate by d encoder ticks (usually small). Using such a small interval for
distance is possible because of the Teensy’s microsecond accuracy.

Problem
Using SSH (Secure Shell) Protocol to access RASCAL and SCAMP’s
computers through command-line means that there is no visual
interface. It would be better to have a way to display positions and
paths visually.

Solution
Host a web server from the car to display a webpage for visual
elements. This server can be accessed remotely using a browser
through the car’s Internet Protocol (IP) address.

Methodology
The web display runs as a ROS node which starts a Python Flask
server. This node listens to various topics that allow any ROS node to
publish to and listen from the web display.

ROS nodes can also publish commands that automatically populate the
page with forms for the user to input parameters and run functions.

w
o

rl
d

 Y

world X

ca
r Y

car X

𝜃

World View Odometry

Anker 737
Power Bank

Mecanum Wheel Jetson Nano Teensy 4.0

Adafruit BNO005 Absolute
Orientation Sensor

DR10002 MD1.3 2A Dual
Motor Controller

12V Brushed DC Motor
with encoders

DFR0379 DC-DC Buck
Converter

Jetson Nano
The software framework of the car is built on the Robotics Operating
System (ROS) environment, which uses “nodes” to run different sections
of code in parallel. Each node is responsible for its own concern and
communicates with other nodes by “publishing” data and “subscribing”
to global topics.

Teensy 4.0
The Teensy runs a main loop that receives desired position data from the
Jetson Nano over serial. It then makes calculations based on its current
position and angle before sending desired speeds to the four mecanum
wheels.

Adarsh Narayanan (UG), Joshua Menezes (UG), Christopher Sawicki (UG), Tommy Chu (UG), Brandon Cheng (UG),
Ruben Alias (UG), Aleicia Zhu (HS), Ranvith Adulla (HS), Arya Chhabra (HS), Suhani Sengupta (HS)

SCAMP: Self-guided Computer Assisted Mecanum Pathfinder

Hardware
Mechanical
The frame of SCAMP employs a 3D printed body with metal screw
inserts. The bottom of the frame houses an Anker 737 power bank,
which delivers power for on-board computer and motors.

Autonomous Self Driving Vehicular Project 2023

WINLAB

Web DisplaySCAMP Overview
Goal
Develop a remote-controllable
car to mimic the path taken by
a car in a real intersection.

Purpose
Bring life to the miniature smart
intersection with dummy cars that will
simulate traffic for our autonomous car

RASCAL.

Future Work and Improvements
→ Simultaneous localization and
mapping (SLAM) using a Realsense
Camera for self orientation

→ Path extraction from video

→ Instantaneous speed parameter

→ Integrate intersection cameras

Software

Four 65mm mecanum wheels give the
car omni-directional motion, allowing
for adjustments during path-following

Electrical Schematic of SCAMP

The motor controller sends power to the motor
based on an analog signal achieved through
pulse-width modulation (PWM).

Proportional-Integral (PI) control is used to
dynamically control motor power based on
desired speed minus current speed. It is
necessary because motor power for different
motors do not necessarily correspond to the
same speed due to manufacturing variability.

Relative vs World Coordinates
SCAMP is able to calculate its position relative
to a world axis using encoders for relative
forward-backwards and side-to-side movement
and the IMU for orientation data. The world

 position is used for position adjustment and
for display on the web server.

d encoder ticks 1 rotation 1,000,000 𝜇s 60 s

t 𝜇s ~1420 encoder ticks 1 s 1 min

/web_display/points /path /teensySerial

webtest path_finding teensySerialweb_display

Topics (holds data)

Nodes (runs code)

Web display points Desired (x, y) Current (x, y)

Teensy Serial
Communication

Features
Interactive x-y graph:
● Display points and lines
● Add, remove, and drag points
● Map of miniature city intersection

In-built and custom commands:
● Save and load points for paths
● Pure-pursuit point service
● Custom commands using ROS

Pulse Width Modulation

This work was supported in part by the NSF REU
program and the donation from nVERSES CAPITAL

Electronics
The Jetson Nano, the on-board computer, runs the ROS software
platform, which handles calculations and communication between
itself, the microcontroller, and a web display

A Teensy 4.0 microcontroller is connected with a micro USB cable,
which provides power and allows for serial communication

The Adafruit BNO005 Absolute Orientation Sensor is an IMU (Inertial
Mass Unit) that sends orientation data to the Teensy through I2C serial
communication

Two DR10002 MD1.3 2A Dual Motor Controllers each control the
front and back pair of 12V Brushed DC Motor with encoders

Since the motors operate at 12 volts, the DFR0379 DC-DC Buck
Converter is used to step down 15 volts from the battery

