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Motivation
● Pure pursuit drives much more consistently than manual control
● Useful for gathering training data

ROS - Robot Operating System
● Project runs code in ROS nodes, which communicate using topics

Modularity
● Nodes can be interchanged while others are kept the same
● Main can be replaced by the Simulator node, for parallel 

development without hardware
● Specifics for Arduino hardware can be found in the 2022 “Mini 

Smart Car Hardware Design” poster
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RASCAL Overview

Physical Design

Software Architecture

Pure Pursuit & Odometry

Imitation Learning Model

Conclusion & Future Work

In our project, we hope to provide greater simulation accuracy with our 
design for a ~1/14 scale platform for miniature smart cars for 
repeatable tests in the smart city environment. Our design includes 
mechanisms such as Ackerman steering and differential gearing 
system to emulate the behavior of real cars, as well as sensors to 
calculate feedback. Using this car, we trained an imitation learning 
model to drive using camera input.

Goal
Create a self-driving car that emulates the mechanics of a real car, 
controlled autonomously by an imitation learning algorithm

Methodology
● Prototype 3D printed car
● Control hardware components
● Record training data
● Train machine learning model to associate control to image

RASCAL: Robotic Autonomous Scale Car for Adaptive Learning

Goal
Train a PyTorch machine learning model to drive using video input

Data Collection
● Drive with pure pursuit algorithm
● Collect training data using the camera and control input
● Synchronize data to associate image frames with control input
● Clean the data and split it into training and test sets

Training the Model
● Train model to learn speed and curve associated with an image
● Output speed and curve when given a new image 
● Compare with expected value (output from pure pursuit)

Running the Model
● Give the model live image feed and receive signals to control car

Conclusion
Our hardware and software redesigns resulted in vastly improved 
performance in operation. Using pure pursuit, we were able to 
accurately follow a defined path with manageable drift, and gather 
data to train our imitation model to drive in a loop in the smart city.

Ackerman Steering
● Inside wheel travels in an arc with a 

smaller radius during turns
● Allows car to turn front wheels at correct  

angles
● Eliminates skidding during turns

Differential Gear System
● Back wheels are powered by stepper motor 
● Allows left and right wheels to turn at 

different speeds, to accommodate different 
turn radii

Adafruit BNO005 Absolute 
Orientation Sensor
● Orientation data
● Used for odometry

3D Model of RASCAL 2.0

Anker 737 Power Bank
● Improved battery for 

addition of camera

Intel RealSense D435
● RGB and depth camera 

SLAM

Smart City Model

Pure Pursuit
● Finds a lookahead point on a path 

given the path and current position
● Internal calculations drive the car in 

arcs to the lookahead point

Odometry
● Uses car angle (from IMU) and distance 

traveled (from encoder) to calculate the 
car’s position with arcs

● Use this feedback to constantly adjust back 
on to the path

Additional components added since 
2022 Smart Car Hardware Design project:

Future Work
● Improve design for easier assembly and 

mass production
● Incorporate an additional input of 

desired action, such as left or right at an 
intersection

● Process data with time or previous 
state, like stopping at stop signs or 
waiting for traffic lights

● Train to output a desired point instead 
of direct controls and use pure pursuit

● Implement SLAM (Simultaneous 
localization and mapping) to improve 
accuracy of odometry using depth 
camera 

Driving in the Smart City

Pure Pursuit 
Feedback Loop

ML Model 
Inference Path

Software Architecture Diagram
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Handling Motor Speed
Motor speed is calculated by finding the time t it took for the wheel to 
rotate by d encoder ticks (usually small). Using such a small interval for 
distance is possible because of the Teensy’s microsecond accuracy.

Problem
Using SSH (Secure Shell) Protocol to access RASCAL and SCAMP’s 
computers through command-line means that there is no visual 
interface. It would be better to have a way to display positions and 
paths visually.

Solution
Host a web server from the car to display a webpage for visual 
elements. This server can be accessed remotely using a browser 
through the car’s Internet Protocol (IP) address.

Methodology
The web display runs as a ROS node which starts a Python Flask 
server. This node listens to various topics that allow any ROS node to 
publish to and listen from the web display.

ROS nodes can also publish commands that automatically populate the 
page with forms for the user to input parameters and run functions.
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World View Odometry

Anker 737 
Power Bank

Mecanum Wheel Jetson Nano Teensy 4.0

Adafruit BNO005 Absolute 
Orientation Sensor

DR10002 MD1.3 2A Dual 
Motor Controller

12V Brushed DC Motor 
with encoders

DFR0379 DC-DC Buck 
Converter

Jetson Nano
The software framework of the car is built on the Robotics Operating 
System (ROS) environment, which uses “nodes” to run different sections 
of code in parallel. Each node is responsible for its own concern and 
communicates with other nodes by “publishing” data and “subscribing” 
to global topics. 

Teensy 4.0
The Teensy runs a main loop that receives desired position data from the 
Jetson Nano over serial. It then makes calculations based on its current 
position and angle before sending desired speeds to the four mecanum 
wheels.
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SCAMP: Self-guided Computer Assisted Mecanum Pathfinder

Hardware
Mechanical
The frame of SCAMP employs a 3D printed body with metal screw 
inserts. The bottom of the frame houses an Anker 737 power bank, 
which delivers power for on-board computer and motors.
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Web DisplaySCAMP Overview
Goal
Develop a remote-controllable
car to mimic the path taken by 
a car in a real intersection.

Purpose
Bring life to the miniature smart 
intersection with dummy cars that will 
simulate traffic for our autonomous car

RASCAL.

Future Work and Improvements
→ Simultaneous localization and 
mapping (SLAM) using a Realsense 
Camera for self orientation

→ Path extraction from video

→ Instantaneous speed parameter

→ Integrate intersection cameras

Software

Four 65mm mecanum wheels give the 
car omni-directional motion, allowing 
for adjustments during path-following

Electrical Schematic of SCAMP

The motor controller sends power to the motor 
based on an analog signal achieved through 
pulse-width modulation (PWM).

Proportional-Integral (PI) control is used to 
dynamically control motor power based on 
desired speed minus current speed. It is 
necessary because motor power  for different 
motors do not necessarily correspond to the 
same speed due to manufacturing variability.

Relative vs World Coordinates
SCAMP is able to calculate its position relative 
to a world axis using encoders for relative 
forward-backwards and side-to-side movement  
and  the  IMU  for  orientation  data.  The  world

 position is used for position adjustment and 
for display on the web server.

d encoder ticks 1 rotation 1,000,000 𝜇s 60 s

t 𝜇s ~1420 encoder ticks 1 s 1 min

/web_display/points /path /teensySerial

webtest path_finding teensySerialweb_display

Topics (holds data)

Nodes (runs code)

Web display points Desired (x, y) Current (x, y)

Teensy Serial 
Communication

Features
Interactive x-y graph:
● Display points and lines
● Add, remove, and drag points
● Map of miniature city intersection

In-built and custom commands:
● Save and load points for paths
● Pure-pursuit point service
● Custom commands using ROS

Pulse Width Modulation
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Electronics
The Jetson Nano, the on-board computer, runs the ROS software 
platform, which handles calculations and communication between 
itself, the microcontroller, and a web display

A Teensy 4.0 microcontroller is connected with a micro USB cable, 
which provides power and allows for serial communication

The Adafruit BNO005 Absolute Orientation Sensor is an IMU (Inertial 
Mass Unit) that sends orientation data to the Teensy through I2C serial 
communication

Two DR10002 MD1.3 2A Dual Motor Controllers each control the 
front and back pair of 12V Brushed DC Motor with encoders

Since the motors operate at 12 volts, the DFR0379 DC-DC Buck 
Converter is used to step down 15 volts from the battery


